based on pulsed laser excitation and time-gated imaging detection

               3D FLIM in conjunction with TriMScope

time-doamin:  50ps lifetime resolution        frequency       domain:          gain modulation up to 1GHz       Homodyne       imaging mode    offers phase and modulation      lifetime           resolution down  to 100ps

The major components of TauScope TD are:

  • pulsed light source,
  • fluorescence microscope,
  • gated ICCD camera for detection
  • software for image acquistion, processing and analysis

FLIM images are generated by acquiring a series of time-gated fluorescence intensity images at a range of time delays after excitation and, for each pixel in the field of view, fitting the assumed decay profile using a nonlinear least squares fit.

The major components of TauScope FD are:

  • intensity modulated light source
  • fluorescence microscope
  • gain modulated ICCD camera for wide-field Homodyne detection
  • software for device control, image acquisition, processing and analysis

FLIM images are generated by acquiring a series of phase shifted fluorescence intensity images at a range of phases and, for each pixel in the field of view, fitting the assumed decay profile using a nonlinear least squares fit.

Functional information may be readily derived from fluorescence lifetime due to its dependence on fluorophore radiative and non-radiative decay rates. Imaging of fluorescence lifetime therefore provides a robust means of acquiring spatially resolved information regarding the local environment of a distributed fluorophore in biological tissue and other heterogeneous or turbid media.

FLIM is independent of fluorescent probe concentration, photobleaching and intensity artefacts

FLIM provides an additional contrast parameter and is very useful in multlabelling experiments

FLIM provides information on molecular interations in the 1..10nm range

FLIM is sensitive to molecular environment parameters such as pH, ion conc., viscosity, refractive index, Ca++, oxygen, polarity, FRET, electron transfer, conformation, ligand-receptor interactions, hydrophobic index...


The use of PicoStar camera in conjunction with the TriMScope allow generation of 3D FLIM data.


Sensing cellular function and molecular activity in vivo using fluorescence lifetime imaging microscopy (FLIM)
Wei Zhong, Dhruv Sud, Mei Wu, Karl A. Merrick, Sofia D. Merajver, David G. Beer, Mary-Ann Mycek
Proceedings of SPIE -- Volume 5864
Novel Optical Instrumentation for Biomedical Applications II, Christian D. Depeursinge, Editor, 2005

Video rate fluorescence lifetime imaging and fluorescence lifetime endoscopy
J. McGinty, I. Munro, J. Requejo-Isidro, D. S. Elson, C. Dunsby, M. A. A. Neil, P. M. W. French, N. P. Galletly, and G. W. H. Stamp
Proceedings of SPIE -- Volume 5864
Novel Optical Instrumentation for Biomedical Applications II, Christian D. Depeursinge, Editor, 2005

Fluorescence lifetime imaging with picosecond resolution for biomedical applications
K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares and A. K. L. Dymoke-Bradshaw
OPTICS LETTERS 1998, 23(10) 810-812

Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope
M. Straub and S. W. Hell
APPLIED PHYSICS LETTERS, 1998, 73(13), 1769-1771

Fast excited state intramolecular proton transfer and subnanosecond dynamic Stokes shift of time-resolved fluorescence spectra of the 5-methoxysalicylic acid/diethyl ether complex.
M. Smoluch, H. Joshi, A. Gerssen, C. Gooijer, and G. van der Zwan                   
J. Phys. Chem. A, 2005, 109, 535-541.

Time-resolved fluorescence of the bacteriophageT4 capsid protein gp23
Aike Stortelder, Joost B. Buijs, Jaap Bulthuis, Saskia M. van der Vies, Cees Gooijer, Gert van der Zwan
Journal of Photochemistry and Photobiology B: Biology 2005, 78, 53–60

Protein localization in living cells and tissues using FRET and FLIM
Ye Chen . James D. Mills, Ammasi Periasamy
Differentiation 2003, 71, 528-541

High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging
J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw
OPTICS LETTERS 2004, 29(19), 2249-51

pH-dependent regulation of lysosomal calcium in macrophages
Kenneth A. Christensen, Jesse T. Myers and Joel A. Swanson
Journal of Cell Science, 2002, 115, 599-607

Time-domain fluorescence lifetime imaging applied to biological tissue
Dan Elson, Jose Requejo-Isidro, Ian Munro, Fred Reavell, Jan Siegel, Klaus Suhling, Paul Tadrous, Richard Benninger, Peter Lanigan, James McGinty, Clifford Talbot, Bebhinn Treanor, Stephen Webb, Ann Sandison, Andrew Wallace, Dan Davis, John Lever, Mark Neil, David Phillips, Gordon Stamp and Paul French
Photochem. Photobiol. Sci ., 2004, 3, 795 – 801

Noniterative Biexponential Fluorescence Lifetime Imaging in the Investigation of Cellular Metabolism by Means of NAD(P)H Autofluorescence
Raluca Niesner, Buelent Peker, Peter Schluesche, and Karl-Heinz Gericke
ChemPhysChem 2004, 5, 1141-1149

Picosecond time-gated microscopy of UV-damaged plant tissue
S. Rehman and P. B. Lukins
OPTICS EXPRESS, 2002, 10(8), 370-375

Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells
Herbert Schneckenburger, Karl Stock, Marco Lyttek, Wolfgang S. L. Strauss and
Reinhard Sailer
Photochem. Photobiol. Sci., 2004, 3, 127 – 131

Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing
Wei Zhong, Paul Urayama and Mary-Ann Mycek
J. Phys. D: Appl. Phys. 36 1689-1695

Autofluorescence Lifetime Imaging of Cultivated Cells Using a UV Picosecond Laser Diode
Herbert Schneckenburger, Michael Wagner, Petra Weber, Wolfgang S.L. Strauss and Reinhard Sailer
Journal of Fluorescence 2004, 14(5), 649 - 654 

Fluorescence lifetimes of molecular dye ensembles near interfaces
Norbert Danz, Jörg Heber, and Andreas Bräuer, Richard Kowarschik
Phys. Rev. A  2002, 66, 063809